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The Earth System Model

“Prediction is the true test of our knowledge” - John Dutton

An Earth System Model is the coupling of separate model components
in such a way as to describe the interactions between different
processes.

Why build an Earth System Model?

* To provide useful and accurate predictions of processes that are too complex
for single system models

— e.g. effects of air-sea interaction on climate and weather forecasts

* To provide an assessment of the importance of feedbacks between different
processes

— e.g. seasonal land cover change on climate
* To extend prediction capabilities into new regimes
— e.g. biosphere impacts of climate change



ES Model Evolution

* ES models begin by coupling two or more models together.
— The starting point is often the atmospheric model.
* Ex/ Atmospheric-ocean model coupling
* Add biosphere model coupling

Atmosphere model needs: Example

* Ocean temp.er:ilture Dust Ocean Biosphere
* Sea state .(frlctlon) Model P N heeds:

» Evaporation rate ~ e Dust input
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ES Model Framework

Comprehensiveness
— Number of sub-models
Coupling

— The coupler (or supervisor) is the heart of the
system and coordinates the models

- Each model retrieves what it needs from the

other components, while placing output there
for other models. Coupler

Modularity

— The ESMF or PRISM standardizes model
interfaces within and between the models

- Communitg participation in development is Ocn
facilitated by the modules within an ESM
framework

Scalabili
L S Example: the NCAR
- As model resolution increases

parameterization schemes will need to scale CCSM Framework

* e.g. bulk convection to cloud resolving
systems
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ESM Computing Issues

Spatial Resolution
— The higher the spatial resolution the more improved the results

- Higher resolution models need shorter time steps (Courant limit) or
need to use semi-implicit solvers (... i.e., more computer time)

- Linkage between horizontal resolution and vertical resolution (~1/100,
in-atmospheric models)

Physics Packages

— Become increasingly complex as science improves (e.g. cloud models)
Diagnostics

— Storage and visualization stress IO bandwidth and storage capacity
Assimilation

— Ingest data organization

— Data preparation

* Need to compare model output with observations for quality check

— Optimized initial state estimation
Predictions

— Ensemble runs
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Weather Prediction

Precipitation Heat Index
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Today’s Capability

3-day forecast at 93%
7 day forecast at 62%

3 day rainfall not
achievable

Hurricane landfall+/- 400
Km at 2-3 davs

Air Quality day by day

20010+ Capability

5 day forecast at >%0%
7-10 day forecast at 75%

3 day rainfall forecast
routine

Hurricane landfall+/- 100
Km at 2-3 davs

Air Quality forecast at 2
days

Anomaly Correlation
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ESE Computational Technology
Reqguirements Workshop

ESE Prediction Goals for Weather Prediction

Present and Desired Accuracies for Weather Forecasts

ESE 2010 Goal
— DAD
: 2 9 4 10

2.5 day skill improvement
(How are we going to do this?)

L]




ESE Computational Technology
Requirements Workshop

Requirements for Weather

2002 Svstem 2010+ Svstem
Resolution
Horzontal 100 km
Vertical levels a3
Time step 30 minutes
*  Observations 5
o Ingested 10/ day
o Assimilated 10°/ day
Svatem Components: Atmosphere Atmosphere, Land-surface.

Land-surface
Data assinulation

Cloeatt, Sea-ice,
Mext-gpeneration data assimm lation
Chemical constituents | L)

Computimg: Important
*  Capability (single image system)} 10 GFlops 50 TFlops
* Capacity (includes test, validation,
reanal yzes, development) 100 GF lops 1 PFlops
Data Volume:
Input (observations) 200 MB / day
* Output {gridded) 2 TB/day
Metworking Storage
*  Data movement
o Internal 4 TB / day 20 PB / day
o External 5 0GB/ day 10TE / day
Archival 1 TB /day 10 PB / day




Solid Earth Modeling
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Solid Earth Research Virtual Observatory (SERVO)

4w ~an, Observations

“"—“(:\"'" |._~TBytes/day -

1 PB per year data rate in 2010
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100 TeraFLOPs sustaine

Fully functional problem
solving environmes

* Program-to-program communication in
milliseconds
+ Approximately 100 model codes
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Workstations, * Plug and play composing of parallel programs from algorithmic modules

other portals . On-demand downloads of 100 6B in 5 minutes
* 106 volume elements rendering in real-time




Computing and Data Storage
Requirements
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A. Computing Platform Throughput Required

Stressing Model Single Estimated
Image Capacity
Throughput Required

Weather 10 Day Forecast 20 THlops 400 Tflops
Atmosphere:10 km
horizontal, 100 levels
vertical
10" observations
Climate S-l Prediction 5 Tflops 100s Tflops
Atmosphere: 25 km
horizontal
Ocean: 6 km horizontal

Solid Earth Earthquake Fault Slip 2 Tflops 10s — 100 Tflops
16M finite elements
100k boundary elements

Sustained Throughput and Capacity Requirements

— Single application requirements derived from current
performance extrapolated by required resolution increase

— Capacity requirements are based on current experience
scaled up to the 2010 strawman environments




Computer Performance Projections
System

Performance
(Peak TF)

Moore’s Law
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5-Order Magnitude Increase in

Satellite Data Over 10 Years from
NOAA Weather Platforms

Daily Upper Air
Observation Count

0.1 Terrabytes

Addition of
Scatterometry

Data
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Data Management Requirements

Observational Data

Access Modes
Rates

Output Data

Storage Term/Re-
access Mode

Weather 1 TB/day Streamed input 10 PB/day - Archival Medium - Long
Forecast Multiple Sources 20 GB/s 10 TB/day - external Catalogued
Continuous distribution
Climate 10s of GB from Data archive 100s TB/day 50% Short term -
Modeling archival sources request Immediate
2 GB/s (latency analysis
tolerant) 50% Medium term
- Catalogued
Solid Earth 100s of GB/day Distributed 1 PB/day - ingested Medium - Long
Research Distributed sources archives - low into distributed Catalogued
latency access archives access

— Data volume is expected to be overwhelming and heterogeneous in

format

Model output data management is the problem

— Current practice does not scale to these volumes
— Data storage expected to be geographically distant from data

consumers
— Uniform, seamless identification, indexing, and access methods

required o
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Data Volume Issues

In the far future a completely different paradigm will be required
in which data volumes are vastly reduced:

* The vast amounts of data collected by sensors can be pre-
processed and lossey compressed (1/100)

* Data assimilation tasks might be off-loaded toward the
observational nodes of the system

* Model output is also not shipped around, but is summarized
into manageable, user-specific chunks that are passed off to
users in image format.

* New types of data organization methods will be needed: Users
will need to be able to “google” the data they need



The Potential of the ESM
(two examples)




NSIPP* Model

* The goal of NSIPP is to develop an assimilation and forecast system to
improve the prediction of ENSO and other major seasonal-to-
interannual signals.

— NSIPP couples ocean, land and atmospheric models
— NSIPP models have moderate resolution

» Atmosphere - 2 x 2.5° up to 10 mb
* Ocean - 1/3 x 5/8° - 27 layers
* Land - tiles at 2 x 2.5°

— NSIPP is capable of data assimilation as well as free running
climate predictions

— NSIPP operates on the Compaq Parallel computer (1392
processors, 3.2 Tf)

— Runtime: 64 processors, - 12 hours/year

| * NASA Seasonal-to-Interannual Prediction Project
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Japanese Earth Simulator

 The ES is a highly parallel vector
supercomputer system of the
distributed-memory type, and
consisted of 640 processor nodes
(PNs) the theoretical performance of
ES is 40Tflops.

* There are several models being
developed separately

— AFES (atmospheric) T12791.96
— OFES (high resolution ocean)
« ES Models are being coupled! OFES

Atmospheric General Circulation Model/AFES

Land

.. No Correction

-
Ocenic General Circulation Model/OFES




AFES T1279L96 AS Precipitation (mm/hour) Japanese Earth Simulat()r
S | T1279L96 spectral model
(10x10 km with 96 levels)
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Conclusions

* Earth System Models are the natural extension of medium range
climate models

* Current ESM’s are designed around the coupling of separate
atmospheric, ocean, land and cryosphere models.

* There is a computer resource tension between higher spatial
resolution and the desire for more coupling and more sub-models.

* Major investments in computing resources will be required to reach
the 2010 capability requirements

* Focused attention on constructing and validating Earth System
Models will be required to vet the science in coupled models and
turn the ES into a predictive system.

* Preliminary results from various efforts is promising.
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NSA ESE Medium-to-Long-Term Climate Goals for 2010:
10-year experimental prediction

HARDWARE
Improve scaling: shared memory
utilization, /O, internode communication

Single aggregate
Image throughput

137F  65TF A Required Scientific Capabilities Qﬂﬁfmmkbmﬂf“““
= Coupled atmosphere-land-ocean-ice-airchem-
carbon models
= Resolve interannual-to-decadal variability SOFTWARE TOOLS
» use the same model, coarser resolution for longer « Transition to ESMF
Req'd turnaround: global change integrations {(~100 years) » Analysis and visualization
1000 days/day = many small ensembles to explore parameter space * Data management
» include stratosphere, land cover/use changes software conforming to
—m— community code & data
structure standards
SOFTWARE TOOLS DATA MANAGEMENT
m * Resources for code » Fast access to remote
optimization INTR
Lack of computer DATA MANAGEMENT 19X 1000 atm, 1/2°X50L0L ocn;
resources for required » Manually generated 40 tracers (10X computer
5GF 13GF | tumaround catalogs & metadata time; 5member ensembles
29X53L atm 4°X13L ocn (Ganerate S0TB/day
10 member ensembles
>

Decade-century Experimental decadal predictions;
integrations Global change assesmentls




~Year Conceptual Evolution of ES Models

2020

2010

2000

1990

1980

1970

1960

Addition of sub-models

Ocean
Weather Models

Forecast
Models I
Ocean

Param.
Schemes

Chemical
Models
Cryosphere
Land surface Models Chémical
Models I Param.
Cloud Schemes
Models I Cryosphere
Param. Inline Chemical
I Land Schemes Models
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Schemes S

Offline Chemical Models ﬁ






